翻訳と辞書
Words near each other
・ Bluke
・ Blukis
・ Blum
・ Blum & Poe
・ Blum (film)
・ Blum Affair
・ Blum axioms
・ Blum Basin Falls
・ Blum Blum Shub
・ Blum Capital
・ Blum Creek
・ Blum Independent School District
・ Blum integer
・ Blum Lakes
・ Blum Stadium
Blum's speedup theorem
・ Blum, Texas
・ Blum-Viollette proposal
・ Bluma
・ Bluma Appel
・ Bluma Tischler
・ Bluma Zeigarnik
・ Blumau Formation
・ Blumau-Neurißhof
・ Blumberg
・ Blumberg (surname)
・ Blumberg Capital
・ Blumberg sign
・ Blume
・ Blume (band)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Blum's speedup theorem : ウィキペディア英語版
Blum's speedup theorem
In computational complexity theory Blum's speedup theorem, first stated by Manuel Blum in 1967, is a fundamental theorem about the complexity of computable functions.
Each computable function has an infinite number of different program representations in a given programming language. In the theory of algorithms one often strives to find a program with the smallest complexity for a given computable function and a given complexity measure (such a program could be called ''optimal''). Blum's speedup theorem shows that for any complexity measure there are computable functions that are not optimal with respect to that measure. This also rules out the idea there is a way to assign to arbitrary functions ''their'' computational complexity, meaning the assignment to any ''f'' of the complexity of an optimal program for ''f''. This does of course not exclude the possibility of finding the complexity of an optimal program for certain specific functions.
== Speedup theorem ==

Given a Blum complexity measure (\varphi, \Phi) and a total computable function f with two parameters, then there exists a total computable predicate g (a boolean valued computable function) so that for every program i for g, there exists a program j for g so that for almost all x
:f(x, \Phi_j(x)) \leq \Phi_i(x) \,
f is called the speedup function. The fact that it may be as fast-growing as desired
(as long as it is computable) means that the phenomenon of always having a program of smaller complexity remains even if by "smaller" we mean "significantly smaller" (for instance, quadratically smaller, exponentially smaller).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Blum's speedup theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.